The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10312095" target="_blank" >RIV/00216208:11320/15:10312095 - isvavai.cz</a>
Result on the web
<a href="http://siret.ms.mff.cuni.cz/p2rank" target="_blank" >http://siret.ms.mff.cuni.cz/p2rank</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
P2RANK
Original language description
P2RANK is a novel machine learning-based method for prediction of ligand binding sites from protein structure. P2RANK uses Random Forests classifier to infer ligandability of local chemical neighborhoods near the protein surface which are represented byspecific near-surface points and described by aggregating physico-chemical features projected on those points from neighboring protein atoms. The points with high predicted ligandability are clustered and ranked to obtain the resulting list of binding site predictions.
Czech name
—
Czech description
—
Classification
Type
R - Software
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GP14-29032P" target="_blank" >GP14-29032P: Efficient chemical space exploration using multi-objective optimization</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Internal product ID
prank_2.0
Technical parameters
stand-alone konzolová aplikace
Economical parameters
Free academic software
Owner IČO
00216208
Owner name
Univerzita Karlova v Praze