All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Ramsey numbers of ordered graphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10313908" target="_blank" >RIV/00216208:11320/15:10313908 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.sciencedirect.com/science/article/pii/S1571065315001055" target="_blank" >http://www.sciencedirect.com/science/article/pii/S1571065315001055</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.endm.2015.06.059" target="_blank" >10.1016/j.endm.2015.06.059</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Ramsey numbers of ordered graphs

  • Original language description

    An ordered graph is a graph together with a total ordering of its vertices. We study ordered Ramsey numbers, the analogue of Ramsey numbers for ordered graphs. In contrast with the case of unordered graphs, we show that there are ordered matchings whoseordered Ramsey numbers are super-polynomial in the number of vertices. We also prove that ordered Ramsey numbers are polynomial in the number of vertices of the given ordered graph G if G has constant degeneracy and constant interval chromatic number orif G has constant bandwidth. The latter result answers positively a question of Conlon, Fox, Lee, and Sudakov. For a few special classes of ordered graphs, we give asymptotically tight bounds for their ordered Ramsey numbers. For so-called monotone cycles we compute their ordered Ramsey numbers exactly.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Electronic Notes in Discrete Mathematics

  • ISSN

    1571-0653

  • e-ISSN

  • Volume of the periodical

    49

  • Issue of the periodical within the volume

    November 2015

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    6

  • Pages from-to

    419-424

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-84947731447