Ramsey numbers of ordered graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10313908" target="_blank" >RIV/00216208:11320/15:10313908 - isvavai.cz</a>
Result on the web
<a href="http://www.sciencedirect.com/science/article/pii/S1571065315001055" target="_blank" >http://www.sciencedirect.com/science/article/pii/S1571065315001055</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.endm.2015.06.059" target="_blank" >10.1016/j.endm.2015.06.059</a>
Alternative languages
Result language
angličtina
Original language name
Ramsey numbers of ordered graphs
Original language description
An ordered graph is a graph together with a total ordering of its vertices. We study ordered Ramsey numbers, the analogue of Ramsey numbers for ordered graphs. In contrast with the case of unordered graphs, we show that there are ordered matchings whoseordered Ramsey numbers are super-polynomial in the number of vertices. We also prove that ordered Ramsey numbers are polynomial in the number of vertices of the given ordered graph G if G has constant degeneracy and constant interval chromatic number orif G has constant bandwidth. The latter result answers positively a question of Conlon, Fox, Lee, and Sudakov. For a few special classes of ordered graphs, we give asymptotically tight bounds for their ordered Ramsey numbers. For so-called monotone cycles we compute their ordered Ramsey numbers exactly.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Electronic Notes in Discrete Mathematics
ISSN
1571-0653
e-ISSN
—
Volume of the periodical
49
Issue of the periodical within the volume
November 2015
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
6
Pages from-to
419-424
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-84947731447