Integrated data depth for smooth functions and its application in supervised classification
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10314013" target="_blank" >RIV/00216208:11320/15:10314013 - isvavai.cz</a>
Result on the web
<a href="http://link.springer.com/article/10.1007%2Fs00180-015-0566-x" target="_blank" >http://link.springer.com/article/10.1007%2Fs00180-015-0566-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00180-015-0566-x" target="_blank" >10.1007/s00180-015-0566-x</a>
Alternative languages
Result language
angličtina
Original language name
Integrated data depth for smooth functions and its application in supervised classification
Original language description
This paper concerns depth functions suitable for smooth functional data. We suggest a modification of the integrated data depth that takes into account the shape properties of the functions. This is achieved by including a derivative(s) into the definition of the suggested depth measures. We then further investigate the use of integrated data depths in supervised classification problems. The performances of classification rules based on different data depths are investigated, both in simulated and realdata sets. As the proposed depth function provides a natural alternative to the depth function based on random projections, the difference in the performances of these two methods are discussed in more detail.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Computational Statistics
ISSN
0943-4062
e-ISSN
—
Volume of the periodical
30
Issue of the periodical within the volume
4
Country of publishing house
DE - GERMANY
Number of pages
21
Pages from-to
1011-1031
UT code for WoS article
000365720500005
EID of the result in the Scopus database
2-s2.0-84948718197