All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

RR-classifier: a nonparametric classification procedure in multidimensional space based on relative ranks

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F21%3A73610108" target="_blank" >RIV/61989592:15310/21:73610108 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/content/pdf/10.1007/s10182-021-00423-7.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1007/s10182-021-00423-7.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10182-021-00423-7" target="_blank" >10.1007/s10182-021-00423-7</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    RR-classifier: a nonparametric classification procedure in multidimensional space based on relative ranks

  • Original language description

    Notions of data depth have motivated nonparametric multivariate analysis, especially in supervised learning. Maximum depth classifiers, classifiers based on depth-depth plots and depth distribution classifiers are nonparametric classification methodologies based on the notions of data depth and are Bayes-optimal rule under certain conditions. This paper proposes rank-rank plot for classification. Theoretical properties of the suggested classifier are investigated in some particular cases given by specific distributional assumptions. The performance of the proposed classification method is further investigated using simulated datasets.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

    <a href="/en/project/EF17_049%2F0008408" target="_blank" >EF17_049/0008408: Hydrodynamic design of pumps</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    AStA-Advances in Statistical Analysis

  • ISSN

    1863-8171

  • e-ISSN

  • Volume of the periodical

    105

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    19

  • Pages from-to

    675-693

  • UT code for WoS article

    000709659400001

  • EID of the result in the Scopus database

    2-s2.0-85117502398