RR-classifier: a nonparametric classification procedure in multidimensional space based on relative ranks
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F21%3A73610108" target="_blank" >RIV/61989592:15310/21:73610108 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/content/pdf/10.1007/s10182-021-00423-7.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1007/s10182-021-00423-7.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10182-021-00423-7" target="_blank" >10.1007/s10182-021-00423-7</a>
Alternative languages
Result language
angličtina
Original language name
RR-classifier: a nonparametric classification procedure in multidimensional space based on relative ranks
Original language description
Notions of data depth have motivated nonparametric multivariate analysis, especially in supervised learning. Maximum depth classifiers, classifiers based on depth-depth plots and depth distribution classifiers are nonparametric classification methodologies based on the notions of data depth and are Bayes-optimal rule under certain conditions. This paper proposes rank-rank plot for classification. Theoretical properties of the suggested classifier are investigated in some particular cases given by specific distributional assumptions. The performance of the proposed classification method is further investigated using simulated datasets.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10103 - Statistics and probability
Result continuities
Project
<a href="/en/project/EF17_049%2F0008408" target="_blank" >EF17_049/0008408: Hydrodynamic design of pumps</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
AStA-Advances in Statistical Analysis
ISSN
1863-8171
e-ISSN
—
Volume of the periodical
105
Issue of the periodical within the volume
4
Country of publishing house
DE - GERMANY
Number of pages
19
Pages from-to
675-693
UT code for WoS article
000709659400001
EID of the result in the Scopus database
2-s2.0-85117502398