All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A DEPTH-BASED MODIFICATION OF THE K-NEAREST NEIGHBOUR METHOD

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10435712" target="_blank" >RIV/00216208:11320/21:10435712 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989592:15310/21:73610110

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=tmT3TMNbOl" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=tmT3TMNbOl</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.14736/kyb-2021-1-0015" target="_blank" >10.14736/kyb-2021-1-0015</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A DEPTH-BASED MODIFICATION OF THE K-NEAREST NEIGHBOUR METHOD

  • Original language description

    We propose a new nonparametric procedure to solve the problem of classifying objects represented by d-dimensional vectors into K &gt;= 2 groups. The newly proposed classifier was inspired by the k nearest neighbour (kNN) method. It is based on the idea of a depth-based distributional neighbourhood and is called k nearest depth neighbours (kNDN) classifier. The kNDN classifier has several desirable properties: in contrast to the classical kNN, it can utilize global properties of the considered distributions (symmetry). In contrast to the maximal depth classifier and related classifiers, it does not have problems with classification when the considered distributions differ in dispersion or have unequal priors. The kNDN classifier is compared to several depth-based classifiers as well as the classical kNN method in a simulation study. According to the average misclassification rates, it is comparable to the best current depth-based classifiers.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

    <a href="/en/project/EF17_049%2F0008408" target="_blank" >EF17_049/0008408: Hydrodynamic design of pumps</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Kybernetika

  • ISSN

    0023-5954

  • e-ISSN

  • Volume of the periodical

    57

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    23

  • Pages from-to

    15-37

  • UT code for WoS article

    000626598800002

  • EID of the result in the Scopus database

    2-s2.0-85103245198