The Weak Inverse Mapping Theorem
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10314057" target="_blank" >RIV/00216208:11320/15:10314057 - isvavai.cz</a>
Alternative codes found
RIV/62690094:18470/15:50003985
Result on the web
<a href="http://dx.doi.org/10.4171/ZAA/1542" target="_blank" >http://dx.doi.org/10.4171/ZAA/1542</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4171/ZAA/1542" target="_blank" >10.4171/ZAA/1542</a>
Alternative languages
Result language
angličtina
Original language name
The Weak Inverse Mapping Theorem
Original language description
We prove that if a bilipschitz mapping f is in W-loc(m,p) (R-n; R-n) then the inverse f(-1) is also a W-loc(m,p) (R-n; R-n) is class mapping. Further we prove that the class of bilipschitz mappings belonging to W-loc(m,p) (R-n;R-n) is closed with respectto composition and multiplication without any restrictions on m,p }= 1. These results can be easily extended to smooth n-dimensional Riemannian manifolds and further we prove a form of the implicit function theorem for Sobolev mappings.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LL1203" target="_blank" >LL1203: Properties of functions and mappings in Sobolev spaces</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Zeitschrift für Analysis und ihre Anwendung
ISSN
0232-2064
e-ISSN
—
Volume of the periodical
34
Issue of the periodical within the volume
3
Country of publishing house
DE - GERMANY
Number of pages
22
Pages from-to
321-342
UT code for WoS article
000364721600005
EID of the result in the Scopus database
2-s2.0-84936764075