All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Regularity of the inverse mapping in Banach function spaces

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12510%2F21%3A43902999" target="_blank" >RIV/60076658:12510/21:43902999 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21240/21:00354599

  • Result on the web

    <a href="https://onlinelibrary.wiley.com/doi/10.1002/mana.201900374" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1002/mana.201900374</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/mana.201900374" target="_blank" >10.1002/mana.201900374</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Regularity of the inverse mapping in Banach function spaces

  • Original language description

    We study the regularity properties of the inverse of a bilipschitz mapping f belonging to ????????????loc, where X is an arbitrary Banach function space. Namely, we prove that the inverse mapping ????−1 is also in ????????????loc. Furthermore, the paper shows that the class of bilipschitz mappings in ????????????loc is closed with respect to composition and multiplication.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GJ18-00960Y" target="_blank" >GJ18-00960Y: Selected topics in non-linear functional analysis and approximation theory</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematische Nachrichten

  • ISSN

    0025-584X

  • e-ISSN

  • Volume of the periodical

    294

  • Issue of the periodical within the volume

    12

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    14

  • Pages from-to

    2382-2395

  • UT code for WoS article

    000735415400001

  • EID of the result in the Scopus database

    2-s2.0-85122094761