Bilipschitz mappings with derivatives of bounded variation
Result description
Let $Omegasubsetrn$ be open and suppose that $f:Omegatorn$ is a bilipschitz mapping such that $Dfin BV_{loc}(Omega,er^{n^2})$. We show that under these assumptions the inverse satisfies $Df^{-1}in BV_{loc}(f(Omega),er^{n^2})$.
Keywords
The result's identifiers
Result code in IS VaVaI
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Bilipschitz mappings with derivatives of bounded variation
Original language description
Let $Omegasubsetrn$ be open and suppose that $f:Omegatorn$ is a bilipschitz mapping such that $Dfin BV_{loc}(Omega,er^{n^2})$. We show that under these assumptions the inverse satisfies $Df^{-1}in BV_{loc}(f(Omega),er^{n^2})$.
Czech name
Bilipschitzovské zobrazení s konečnou variací
Czech description
Nechť $Omegasubsetrn$ je otevřená a $f:Omegatorn$ je bilipschitzovské zobrazení takové, že $Dfin BV_{loc}(Omega,er^{n^2})$. Pak inverzní zobrazení splňuje $Df^{-1}in BV_{loc}(f(Omega),er^{n^2})$.
Classification
Type
Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
GP201/06/P100: Properties of functions and mappings in Sobolev spaces
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2008
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Publicacions Matematiques
ISSN
0214-1493
e-ISSN
—
Volume of the periodical
52
Issue of the periodical within the volume
1
Country of publishing house
ES - SPAIN
Number of pages
9
Pages from-to
—
UT code for WoS article
000253494900004
EID of the result in the Scopus database
—
Basic information
Result type
Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP
BA - General mathematics
Year of implementation
2008