Bilipschitz mappings with derivatives of bounded variation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F08%3A00100807" target="_blank" >RIV/00216208:11320/08:00100807 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Bilipschitz mappings with derivatives of bounded variation
Original language description
Let $Omegasubsetrn$ be open and suppose that $f:Omegatorn$ is a bilipschitz mapping such that $Dfin BV_{loc}(Omega,er^{n^2})$. We show that under these assumptions the inverse satisfies $Df^{-1}in BV_{loc}(f(Omega),er^{n^2})$.
Czech name
Bilipschitzovské zobrazení s konečnou variací
Czech description
Nechť $Omegasubsetrn$ je otevřená a $f:Omegatorn$ je bilipschitzovské zobrazení takové, že $Dfin BV_{loc}(Omega,er^{n^2})$. Pak inverzní zobrazení splňuje $Df^{-1}in BV_{loc}(f(Omega),er^{n^2})$.
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GP201%2F06%2FP100" target="_blank" >GP201/06/P100: Properties of functions and mappings in Sobolev spaces</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2008
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Publicacions Matematiques
ISSN
0214-1493
e-ISSN
—
Volume of the periodical
52
Issue of the periodical within the volume
1
Country of publishing house
ES - SPAIN
Number of pages
9
Pages from-to
—
UT code for WoS article
000253494900004
EID of the result in the Scopus database
—