All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Mappings of generalized finite distortion and continuity

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10475605" target="_blank" >RIV/00216208:11320/23:10475605 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=rixOG_SXFt" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=rixOG_SXFt</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1112/jlms.12835" target="_blank" >10.1112/jlms.12835</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Mappings of generalized finite distortion and continuity

  • Original language description

    We study continuity properties of Sobolev mappings f is an element of W-loc(1,n )(Omega,R-n),n &gt;= 2, that satisfy the following generalized finite distortion inequality|Df(x)}(n ) &lt;= K(x) J(f)(x)+Sigma(x)for almost every x is an element of R-n. Here K: Omega -&gt; [1,infinity) and Sigma: Omega -&gt; [0,infinity) are measurable functions. Note that when Sigma equivalent to 0, we recover the class of mappings of finite distortion, which are always continuous. The continuity of arbitrary solutions, however, turns out to be an intricate question. We fully solve the continuity problem in the case of bounded distortion K is an element of L-infinity(Omega), where a sharp condition for continuity is that Sigma is in the Zygmund space Sigma log(mu)(e+Sigma)is an element of L-loc(1)(Omega) for some mu &gt; n-1. We also show that one can slightly relax the boundedness assumption on K to an exponential class exp (lambda K) is an element of L-loc(1)(Omega) with lambda &gt; n+1, and still obtain continuous solutions when Sigma log(mu)(e+Sigma)is an element of L-loc(1)(Omega) with mu&gt;lambda. On the other hand, for all p,q is an element of[1,infinity] with p(-1)+q(-1)=1, we construct a discontinuous solution with K is an element of L-loc(p)(Omega) and Sigma/K is an element of L-loc(q)(Omega), including an example with Sigma is an element of L-loc(infinity)(Omega) and K is an element of L-loc(1)(Omega).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of the London Mathematical Society

  • ISSN

    0024-6107

  • e-ISSN

    1469-7750

  • Volume of the periodical

    1

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    37

  • Pages from-to

    1-37

  • UT code for WoS article

    001104130200001

  • EID of the result in the Scopus database

    2-s2.0-85176767860