ON QUANTITATIVE SCHUR AND DUNFORD-PETTIS PROPERTIES
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10314321" target="_blank" >RIV/00216208:11320/15:10314321 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1017/S0004972715000076" target="_blank" >http://dx.doi.org/10.1017/S0004972715000076</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S0004972715000076" target="_blank" >10.1017/S0004972715000076</a>
Alternative languages
Result language
angličtina
Original language name
ON QUANTITATIVE SCHUR AND DUNFORD-PETTIS PROPERTIES
Original language description
We show that the dual to any subspace of c(0)(Gamma) (Gamma is an arbitrary index set) has the strongest possible quantitative version of the Schur property. Further, we establish a relationship between the quantitative Schur property and quantitative versions of the Dunford-Pettis property. Finally, we apply these results to show, in particular, that any subspace of the space of compact operators on l(p) (1 < p < infinity) with the Dunford-Pettis property automatically satisfies both its quantitative versions.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F12%2F0290" target="_blank" >GAP201/12/0290: Topological and geometrical properties of Banach spaces and operator algebras</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Bulletin of the Australian Mathematical Society
ISSN
0004-9727
e-ISSN
—
Volume of the periodical
91
Issue of the periodical within the volume
3
Country of publishing house
AU - AUSTRALIA
Number of pages
16
Pages from-to
471-486
UT code for WoS article
000353579700011
EID of the result in the Scopus database
2-s2.0-84928768674