All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Quantitative Dunford-Pettis property

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10173726" target="_blank" >RIV/00216208:11320/13:10173726 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.aim.2012.10.019" target="_blank" >http://dx.doi.org/10.1016/j.aim.2012.10.019</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.aim.2012.10.019" target="_blank" >10.1016/j.aim.2012.10.019</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Quantitative Dunford-Pettis property

  • Original language description

    We investigate possible quantifications of the Dunford-Pettis property. We show, in particular, that the Dunford-Pettis property is automatically quantitative in a sense. Further, there are two incomparable mutually dual stronger versions of a quantitative Dunford-Pettis property. We prove that L-1 spaces and C(K) spaces possess both of them. We also show that several natural measures of weak non-compactness are equal in L-1 spaces.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Advances in Mathematics

  • ISSN

    0001-8708

  • e-ISSN

  • Volume of the periodical

    234

  • Issue of the periodical within the volume

    15.2.2013

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    40

  • Pages from-to

    488-527

  • UT code for WoS article

    000313405200013

  • EID of the result in the Scopus database