Dunford–Pettis type properties and the Grothendieck property for function spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00532217" target="_blank" >RIV/67985840:_____/20:00532217 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s13163-019-00336-9" target="_blank" >https://doi.org/10.1007/s13163-019-00336-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s13163-019-00336-9" target="_blank" >10.1007/s13163-019-00336-9</a>
Alternative languages
Result language
angličtina
Original language name
Dunford–Pettis type properties and the Grothendieck property for function spaces
Original language description
For a Tychonoff space X, let Ck(X) and Cp(X) be the spaces of real-valued continuous functions C(X) on X endowed with the compact-open topology and the pointwise topology, respectively. If X is compact, the classic result of A. Grothendieck states that Ck(X) has the Dunford–Pettis property and the sequential Dunford–Pettis property. We extend Grothendieck’s result by showing that Ck(X) has both the Dunford–Pettis property and the sequential Dunford–Pettis property if X satisfies one of the following conditions: (1) X is a hemicompact space, (2) X is a cosmic space (= a continuous image of a separable metrizable space), (3) X is the ordinal space [0 , κ) for some ordinal κ, or (4) X is a locally compact paracompact space. We show that if X is a cosmic space, then Ck(X) has the Grothendieck property if and only if every functionally bounded subset of X is finite. We prove that Cp(X) has the Dunford–Pettis property and the sequential Dunford–Pettis property for every Tychonoff space X, and Cp(X) has the Grothendieck property if and only if every functionally bounded subset of X is finite.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Revista Mathématica Complutense
ISSN
1139-1138
e-ISSN
—
Volume of the periodical
33
Issue of the periodical within the volume
3
Country of publishing house
ES - SPAIN
Number of pages
14
Pages from-to
871-884
UT code for WoS article
000567467200011
EID of the result in the Scopus database
2-s2.0-85076085610