All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Dunford–Pettis type properties and the Grothendieck property for function spaces

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00532217" target="_blank" >RIV/67985840:_____/20:00532217 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/s13163-019-00336-9" target="_blank" >https://doi.org/10.1007/s13163-019-00336-9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s13163-019-00336-9" target="_blank" >10.1007/s13163-019-00336-9</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Dunford–Pettis type properties and the Grothendieck property for function spaces

  • Original language description

    For a Tychonoff space X, let Ck(X) and Cp(X) be the spaces of real-valued continuous functions C(X) on X endowed with the compact-open topology and the pointwise topology, respectively. If X is compact, the classic result of A. Grothendieck states that Ck(X) has the Dunford–Pettis property and the sequential Dunford–Pettis property. We extend Grothendieck’s result by showing that Ck(X) has both the Dunford–Pettis property and the sequential Dunford–Pettis property if X satisfies one of the following conditions: (1) X is a hemicompact space, (2) X is a cosmic space (= a continuous image of a separable metrizable space), (3) X is the ordinal space [0 , κ) for some ordinal κ, or (4) X is a locally compact paracompact space. We show that if X is a cosmic space, then Ck(X) has the Grothendieck property if and only if every functionally bounded subset of X is finite. We prove that Cp(X) has the Dunford–Pettis property and the sequential Dunford–Pettis property for every Tychonoff space X, and Cp(X) has the Grothendieck property if and only if every functionally bounded subset of X is finite.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Revista Mathématica Complutense

  • ISSN

    1139-1138

  • e-ISSN

  • Volume of the periodical

    33

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    ES - SPAIN

  • Number of pages

    14

  • Pages from-to

    871-884

  • UT code for WoS article

    000567467200011

  • EID of the result in the Scopus database

    2-s2.0-85076085610