A note on the weak topology of spaces C_k(X) of continuous functions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00542801" target="_blank" >RIV/67985840:_____/21:00542801 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s13398-021-01051-1" target="_blank" >https://doi.org/10.1007/s13398-021-01051-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s13398-021-01051-1" target="_blank" >10.1007/s13398-021-01051-1</a>
Alternative languages
Result language
angličtina
Original language name
A note on the weak topology of spaces C_k(X) of continuous functions
Original language description
It is well known that the property of being a bounded set in the class of topological vector spaces E is not a topological property, where a subset B⊂E is called a bounded set if every neighbourhood of zero U in E absorbs B. The paper deals with the problem which topological properties of bounded sets for the space Ck(X) (of continuous real-valued functions on a Tychonoff space X with the compact-open topology) endowed with the weak topology of Ck(X) can be transferred to bounded sets of Ck(Y) endowed with the weak topology, assuming that the corresponding weak topologies of both Ck(X) and Ck(Y) are homeomorphic.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GF20-22230L" target="_blank" >GF20-22230L: Banach spaces of continuous and Lipschitz functions</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales
ISSN
1578-7303
e-ISSN
1579-1505
Volume of the periodical
115
Issue of the periodical within the volume
3
Country of publishing house
ES - SPAIN
Number of pages
10
Pages from-to
125
UT code for WoS article
000758963500001
EID of the result in the Scopus database
2-s2.0-85106926275