Hodge theory for complexes over C*-algebras with an application to A-ellipticity
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10315800" target="_blank" >RIV/00216208:11320/15:10315800 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s10455-015-9449-1" target="_blank" >http://dx.doi.org/10.1007/s10455-015-9449-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10455-015-9449-1" target="_blank" >10.1007/s10455-015-9449-1</a>
Alternative languages
Result language
angličtina
Original language name
Hodge theory for complexes over C*-algebras with an application to A-ellipticity
Original language description
For a class of co-chain complexes in the category of pre-Hilbert -modules, we prove that their cohomology groups equipped with the canonical quotient topology are pre-Hilbert -modules, and derive the Hodge theory and, in particular, the Hodge decomposition for them. As an application, we show that -elliptic complexes of pseudodifferential operators acting on sections of finitely generated projective -Hilbert bundles over compact manifolds belong to this class if the images of the continuous extensions of their associated Laplace operators are closed. Moreover, we prove that the cohomology groups of these complexes share the structure of the fibers, in the sense that they are also finitely generated projective Hilbert A-modules.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Annals of Global Analysis and Geometry
ISSN
0232-704X
e-ISSN
—
Volume of the periodical
47
Issue of the periodical within the volume
4
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
14
Pages from-to
359-372
UT code for WoS article
000352292200003
EID of the result in the Scopus database
2-s2.0-84939966776