All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Cops and Robbers on String Graphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10316177" target="_blank" >RIV/00216208:11320/15:10316177 - isvavai.cz</a>

  • Result on the web

    <a href="http://link.springer.com/chapter/10.1007%2F978-3-662-48971-0_31" target="_blank" >http://link.springer.com/chapter/10.1007%2F978-3-662-48971-0_31</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-662-48971-0_31" target="_blank" >10.1007/978-3-662-48971-0_31</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Cops and Robbers on String Graphs

  • Original language description

    The game of cops and robber, introduced by Nowakowski and Winkler in 1983, is played by two players on a graph. One controls k cops and the other a robber. The players alternate and move their pieces to the distance at most one. The cops win if they capture the robber, the robber wins by escaping indefinitely. The cop number of G is the smallest k such that k cops win the game. We extend the results of Gavenčiak et al. [ISAAC 2013], investigating the maximum cop number of geometric intersection graphs.Our main result shows that the maximum cop number of string graphs is at most 15, improving the previous bound 30. We generalize this approach to string graphs on a surface of genus g to show that the maximum cop number is at most 10g+15, which strengthens the result of Quilliot [J. Combin. Theory Ser. B 38, 89-92 (1985)]. For outer string graphs, we show that the maximum cop number is between 3 and 4. Our results also imply polynomial-time algorithms determining the cop number for all t

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 26th International Symposium on Algorithms and Computation

  • ISBN

    978-3-662-48970-3

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    12

  • Pages from-to

    355-366

  • Publisher name

    Springer Berlin Heidelberg

  • Place of publication

    Berlin

  • Event location

    Nagoya, Japonsko

  • Event date

    Dec 9, 2015

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article