On separable determination of sigma-P-porous sets in Banach spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10317070" target="_blank" >RIV/00216208:11320/15:10317070 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.topol.2014.11.005" target="_blank" >http://dx.doi.org/10.1016/j.topol.2014.11.005</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.topol.2014.11.005" target="_blank" >10.1016/j.topol.2014.11.005</a>
Alternative languages
Result language
angličtina
Original language name
On separable determination of sigma-P-porous sets in Banach spaces
Original language description
We use a method involving elementary submodels and a partial converse of Foran lemma to prove separable reduction theorems concerning Souslin ?-P-porous sets where P can be from a rather wide class of porosity-like relations in complete metric spaces. Inparticular, we separably reduce the notion of Souslin cone small set in Asplund spaces. As an application we prove that a continuous approximately convex function on an Asplund space is Fréchet differentiable up to a cone small set.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F12%2F0436" target="_blank" >GAP201/12/0436: Theory of Real Functions and Descriptive Set Theory III</a><br>
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Topology and its Applications
ISSN
0166-8641
e-ISSN
—
Volume of the periodical
180
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
21
Pages from-to
64-84
UT code for WoS article
000348965700004
EID of the result in the Scopus database
2-s2.0-84911940881