All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Fischer decomposition for polynomials on superspace

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10317158" target="_blank" >RIV/00216208:11320/15:10317158 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1063/1.4935362" target="_blank" >http://dx.doi.org/10.1063/1.4935362</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/1.4935362" target="_blank" >10.1063/1.4935362</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Fischer decomposition for polynomials on superspace

  • Original language description

    Recently, the Fischer decomposition for polynomials on superspace R^(m|2n) (that is, polynomials in m commuting and 2n anti-commuting variables) has been obtained unless the superdimension M = m - 2n is even and non-positive. In this case, it turns out that the Fischer decomposition of polynomials into spherical harmonics is quite analogous as in R^m and it is an irreducible decomposition under the natural action of Lie superalgebra osp(m|2n). In this paper, we describe explicitly the Fischer decomposition in the exceptional case. In particular, we show that, under the action of osp(m|2n), the Fischer decomposition is not, in general, a decomposition into irreducible but just indecomposable pieces.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Physics

  • ISSN

    0022-2488

  • e-ISSN

  • Volume of the periodical

    56

  • Issue of the periodical within the volume

    11

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    9

  • Pages from-to

  • UT code for WoS article

    000366056700009

  • EID of the result in the Scopus database

    2-s2.0-84947238657