Fischer decomposition for polynomials on superspace
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10317158" target="_blank" >RIV/00216208:11320/15:10317158 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1063/1.4935362" target="_blank" >http://dx.doi.org/10.1063/1.4935362</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/1.4935362" target="_blank" >10.1063/1.4935362</a>
Alternative languages
Result language
angličtina
Original language name
Fischer decomposition for polynomials on superspace
Original language description
Recently, the Fischer decomposition for polynomials on superspace R^(m|2n) (that is, polynomials in m commuting and 2n anti-commuting variables) has been obtained unless the superdimension M = m - 2n is even and non-positive. In this case, it turns out that the Fischer decomposition of polynomials into spherical harmonics is quite analogous as in R^m and it is an irreducible decomposition under the natural action of Lie superalgebra osp(m|2n). In this paper, we describe explicitly the Fischer decomposition in the exceptional case. In particular, we show that, under the action of osp(m|2n), the Fischer decomposition is not, in general, a decomposition into irreducible but just indecomposable pieces.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Physics
ISSN
0022-2488
e-ISSN
—
Volume of the periodical
56
Issue of the periodical within the volume
11
Country of publishing house
US - UNITED STATES
Number of pages
9
Pages from-to
—
UT code for WoS article
000366056700009
EID of the result in the Scopus database
2-s2.0-84947238657