Quasistatic adhesive contact delaminating in mixed mode and its numerical treatment
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10317215" target="_blank" >RIV/00216208:11320/15:10317215 - isvavai.cz</a>
Alternative codes found
RIV/67985556:_____/15:00428840 RIV/61388998:_____/15:00428840
Result on the web
<a href="http://dx.doi.org/10.1177/1081286513507942" target="_blank" >http://dx.doi.org/10.1177/1081286513507942</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1177/1081286513507942" target="_blank" >10.1177/1081286513507942</a>
Alternative languages
Result language
angličtina
Original language name
Quasistatic adhesive contact delaminating in mixed mode and its numerical treatment
Original language description
An adhesive unilateral contact between visco-elastic bodies at small strains and in a Kelvin-Voigt rheology is scrutinized, neglecting inertia. The flow-rule for debonding the adhesive is considered rate independent, unidirectional, and non-associative due to dependence on the mixity of modes of delamination, namely Mode I (opening) needs (= dissipates) less energy than Mode II (shearing). Such mode-mixity dependence of delamination is a very pronounced (and experimentally confirmed) phenomenon typically considered in engineering models. An efficient semi-implicit-in-time FEM discretization leading to recursive quadratic mathematical programs is devised. Its convergence and thus the existence of weak solutions is proved. Computational experiments implemented by BEM illustrate the modeling aspects and the numerical efficiency of the discretization.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F09%2F0917" target="_blank" >GA201/09/0917: Mathematical and computer analysis of the evolution processes in nonlinear viscoelastic fluid-like materials</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematics and Mechanics of Solids
ISSN
1081-2865
e-ISSN
—
Volume of the periodical
20
Issue of the periodical within the volume
5
Country of publishing house
GB - UNITED KINGDOM
Number of pages
18
Pages from-to
582-599
UT code for WoS article
000354121400006
EID of the result in the Scopus database
2-s2.0-84930450567