Maximally-dissipative local solutions to rate-independent systems and application to damage and delamination problem
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10317219" target="_blank" >RIV/00216208:11320/15:10317219 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.na.2014.09.020" target="_blank" >http://dx.doi.org/10.1016/j.na.2014.09.020</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.na.2014.09.020" target="_blank" >10.1016/j.na.2014.09.020</a>
Alternative languages
Result language
angličtina
Original language name
Maximally-dissipative local solutions to rate-independent systems and application to damage and delamination problem
Original language description
The system of two inclusions with the dissipation potential degree-1 homogeneous and with the stored energy separately convex is considered. An approximation by a semiimplicit time discretisation is shown to converge to specific local (weak) solutions obeying maximimal-dissipation principle in a certain sense. Applications of such (in fact, force-driven) solutions are illustrated on specific examples from continuum mechanics at small strains involving inelastic processes in a bulk or on a surface, namely damage and delamination.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nonlinear Analysis, Theory, Methods and Applications
ISSN
0362-546X
e-ISSN
—
Volume of the periodical
113
Issue of the periodical within the volume
999
Country of publishing house
GB - UNITED KINGDOM
Number of pages
18
Pages from-to
33-50
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-84908428491