On a hyperbolic system arising in liquid crystals modeling
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00488850" target="_blank" >RIV/67985840:_____/18:00488850 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1142/S0219891618500029" target="_blank" >http://dx.doi.org/10.1142/S0219891618500029</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0219891618500029" target="_blank" >10.1142/S0219891618500029</a>
Alternative languages
Result language
angličtina
Original language name
On a hyperbolic system arising in liquid crystals modeling
Original language description
We consider a model of liquid crystals, based on a nonlinear hyperbolic system of differential equations, that represents an inviscid version of the model proposed by Qian and Sheng. A new concept of dissipative solution is proposed, for which a global-in-time existence theorem is shown. The dissipative solutions enjoy the following properties: (i) they exist globally in time for any finite energy initial data, (ii) dissipative solutions enjoying certain smoothness are classical solutions, (iii) a dissipative solution coincides with a strong solution originating from the same initial data as long as the latter exists.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Hyperbolic Differential Equations
ISSN
0219-8916
e-ISSN
—
Volume of the periodical
15
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
21
Pages from-to
15-35
UT code for WoS article
000437004400002
EID of the result in the Scopus database
2-s2.0-85044585545