All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Solution Semiflow to the isentropic Euler system

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00522128" target="_blank" >RIV/67985840:_____/20:00522128 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/s00205-019-01420-6" target="_blank" >https://doi.org/10.1007/s00205-019-01420-6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00205-019-01420-6" target="_blank" >10.1007/s00205-019-01420-6</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Solution Semiflow to the isentropic Euler system

  • Original language description

    It is nowadays well understood that the multidimensional isentropic Euler system is desperately ill-posed. Even certain smooth initial data give rise to infinitely many solutions and all available selection criteria fail to ensure both global existence and uniqueness. We propose a different approach to the well-posedness of this system based on ideas from the theory of Markov semigroups: we show the existence of a Borel measurable solution semiflow. To this end, we introduce a notion of dissipative solution which is understood as time dependent trajectories of the basic state variables—the mass density, the linear momentum, and the energy—in a suitable phase space. The underlying system of PDEs is satisfied in a generalized sense. The solution semiflow enjoys the standard semigroup property and the solutions coincide with the strong solutions as long as the latter exist. Moreover, they minimize the energy (maximize the energy dissipation) among all dissipative solutions.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA18-05974S" target="_blank" >GA18-05974S: Oscillations and concentrations versus stability in the equations of mathematical fluid dynamics</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Archive for Rational Mechanics and Analysis

  • ISSN

    0003-9527

  • e-ISSN

  • Volume of the periodical

    235

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    28

  • Pages from-to

    167-194

  • UT code for WoS article

    000522430900006

  • EID of the result in the Scopus database

    2-s2.0-85069473027