Dissipative solutions and semiflow selection for the complete Euler system
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00524628" target="_blank" >RIV/67985840:_____/20:00524628 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s00220-019-03662-7" target="_blank" >https://doi.org/10.1007/s00220-019-03662-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00220-019-03662-7" target="_blank" >10.1007/s00220-019-03662-7</a>
Alternative languages
Result language
angličtina
Original language name
Dissipative solutions and semiflow selection for the complete Euler system
Original language description
To circumvent the ill-posedness issues present in various models of continuum fluid mechanics, we present a dynamical systems approach aiming at the selection of physically relevant solutions. Even under the presence of infinitely many solutions to the full Euler system describing the motion of a compressible inviscid fluid, our approach permits to select a system of solutions (one trajectory for every initial condition) satisfying the classical semiflow property. Moreover, the selection respects the well accepted admissibility criteria for physical solutions, namely, maximization of the entropy production rate and the weak–strong uniqueness principle. Consequently, strong solutions are always selected whenever they exist and stationary states are stable and included in the selection as well. To this end, we introduce a notion of dissipative solution, which is given by a triple of density, momentum and total entropy defined as expectations of a suitable measure-valued solution.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA18-05974S" target="_blank" >GA18-05974S: Oscillations and concentrations versus stability in the equations of mathematical fluid dynamics</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Communications in Mathematical Physics
ISSN
0010-3616
e-ISSN
—
Volume of the periodical
376
Issue of the periodical within the volume
2
Country of publishing house
DE - GERMANY
Number of pages
27
Pages from-to
1471-1497
UT code for WoS article
000536053300016
EID of the result in the Scopus database
2-s2.0-85078059145