Asymptotic analysis of compressible, viscous, and heat conducting fluids
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F15%3A00444396" target="_blank" >RIV/67985840:_____/15:00444396 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Asymptotic analysis of compressible, viscous, and heat conducting fluids
Original language description
This is a survey of recent results concerning the mathematical theory of compressible, viscous, and heat conducting fluids. Starting from the basic physical principles, notably the First and Second laws of thermodynamics, we introduce a concept of weak solutions to complete fluid systems and analyze their asymptotic behavior. In particular, the long time behavior and scale analysis will be performed. We also introduce a new concept of relative entropy for the system and show how it can be used in the problem of weak-strong uniqueness and the inviscid limits.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F09%2F0917" target="_blank" >GA201/09/0917: Mathematical and computer analysis of the evolution processes in nonlinear viscoelastic fluid-like materials</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Nonlinear Dynamics in Partial Differential Equations
ISBN
978-4-86497-022-8
ISSN
—
e-ISSN
—
Number of pages
34
Pages from-to
1-33
Publisher name
Mathematical Society of Japan
Place of publication
Tokyo
Event location
Kyushu
Event date
Sep 12, 2011
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000358751100001