Mathematical Thermodynamics of Viscous Fluids
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F17%3A00483709" target="_blank" >RIV/67985840:_____/17:00483709 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-319-67600-5_2" target="_blank" >http://dx.doi.org/10.1007/978-3-319-67600-5_2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-67600-5_2" target="_blank" >10.1007/978-3-319-67600-5_2</a>
Alternative languages
Result language
angličtina
Original language name
Mathematical Thermodynamics of Viscous Fluids
Original language description
This course is a short introduction to the mathematical theory of the motion of viscous fluids. We introduce the concept of weak solution to the Navier-Stokes-Fourier system and discuss its basic properties. In particular, we construct the weak solutions as a suitable limit of a mixed numerical scheme based on a combination of the finite volume and finite elements method. The question of stability and robustness of various classes of solutions is addressed with the help of the relative (modulated) energy functional. Related results concerning weak-strong uniqueness and conditional regularity of weak solutions are presented. Finally, we discuss the asymptotic limit when viscosity of the fluid tends to zero. Several examples of ill- posedness for the limit Euler system are given and an admissibility criterion based on the viscous approximation is proposed.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Mathematical Thermodynamics of Complex Fluids
ISBN
978-3-319-67599-2
ISSN
0075-8434
e-ISSN
—
Number of pages
54
Pages from-to
47-100
Publisher name
Springer
Place of publication
Cham
Event location
Cetraro
Event date
Jun 29, 2015
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000443799200003