A convergent numerical method for the full Navier-Stokes-Fourier system in smooth physical domains
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F16%3A00463984" target="_blank" >RIV/67985840:_____/16:00463984 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1137/15M1011809" target="_blank" >http://dx.doi.org/10.1137/15M1011809</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/15M1011809" target="_blank" >10.1137/15M1011809</a>
Alternative languages
Result language
angličtina
Original language name
A convergent numerical method for the full Navier-Stokes-Fourier system in smooth physical domains
Original language description
We propose a mixed finite volume-finite element numerical method for solving the full Navier-Stokes-Fourier system describing the motion of a compressible, viscous, and heat conducting fluid. The physical domain occupied by the fluid has a smooth boundary and it is approximated by a family of polyhedral numerical domains. Convergence and stability of the numerical scheme is studied. The numerical solutions are shown to converge, up to a subsequence, to a weak solution of the problem posed on the limit domain.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
SIAM Journal on Numerical Analysis
ISSN
0036-1429
e-ISSN
—
Volume of the periodical
54
Issue of the periodical within the volume
5
Country of publishing house
US - UNITED STATES
Number of pages
21
Pages from-to
3062-3082
UT code for WoS article
000387328000014
EID of the result in the Scopus database
2-s2.0-84992735193