Mathematical analysis of fluids in motion: from well-posedness to model reduction
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10189792" target="_blank" >RIV/00216208:11320/13:10189792 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s13163-013-0126-2" target="_blank" >http://dx.doi.org/10.1007/s13163-013-0126-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s13163-013-0126-2" target="_blank" >10.1007/s13163-013-0126-2</a>
Alternative languages
Result language
angličtina
Original language name
Mathematical analysis of fluids in motion: from well-posedness to model reduction
Original language description
This paper reviews some recent results on the Navier-Stokes-Fourier system governing the evolution of a general compressible, viscous, and heat conducting fluid. We discuss several concepts of weak solutions, in particular, using the implications of theSecond law of thermodynamics. We introduce the concept of relative entropy and dissipative solution and show the principle of weak-strong uniqueness. The second part of the paper is devoted to problems of model reduction and the related singular limits.Several examples of singular limits are presented: The incompressible limit, the inviscid limit, the low Rossby number limit and their combinations.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LL1202" target="_blank" >LL1202: Implicitly constituted material models: from theory through model reduction to efficient numerical methods</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Revista Matematica Complutense
ISSN
1139-1138
e-ISSN
—
Volume of the periodical
26
Issue of the periodical within the volume
2
Country of publishing house
ES - SPAIN
Number of pages
42
Pages from-to
299-340
UT code for WoS article
000320658700001
EID of the result in the Scopus database
—