Compression effects in heterogeneous media
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00505707" target="_blank" >RIV/67985840:_____/19:00505707 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.5802/jep.98" target="_blank" >http://dx.doi.org/10.5802/jep.98</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5802/jep.98" target="_blank" >10.5802/jep.98</a>
Alternative languages
Result language
angličtina
Original language name
Compression effects in heterogeneous media
Original language description
We study in this paper compression effects in heterogeneous media with maximal packing constraint. Starting from compressible Brinkman equations, where maximal packing is encoded in a singular pressure and a singular bulk viscosity, we show that the global weak solutions converge (up to a subsequence) to global weak solutions of the two-phase compressible/incompressible Brinkman equations with respect to a parameter ε which measures effects close to the maximal packing value. Depending on the importance of the bulk viscosity with respect to the pressure in the dense regimes, memory effects are activated or not at the limit in the congested (incompressible) domain.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal de l'École Polytechnique Mathématiques
ISSN
2429-7100
e-ISSN
—
Volume of the periodical
6
Issue of the periodical within the volume
June
Country of publishing house
FR - FRANCE
Number of pages
35
Pages from-to
433-467
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85071372089