On weak-strong uniqueness and singular limit for the compressible primitive equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00523995" target="_blank" >RIV/67985840:_____/20:00523995 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.3934/dcds.2020181" target="_blank" >http://dx.doi.org/10.3934/dcds.2020181</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3934/dcds.2020181" target="_blank" >10.3934/dcds.2020181</a>
Alternative languages
Result language
angličtina
Original language name
On weak-strong uniqueness and singular limit for the compressible primitive equations
Original language description
The paper addresses the weak-strong uniqueness property and singular limit for the compressible Primitive Equations (PE). We show that a weak solution coincides with the strong solution emanating from the same initial data. On the other hand, we prove compressible PE will approach to the incompressible inviscid PE equations in the regime of low Mach number and large Reynolds number in the case of well-prepared initial data. To the best of the authors' knowledge, this is the first work to bridge the link between the compressible PE with incompressible inviscid PE.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA19-04243S" target="_blank" >GA19-04243S: Partial differential equations in mechanics and thermodynamics of fluids</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete and Continuous Dynamical Systems
ISSN
1078-0947
e-ISSN
—
Volume of the periodical
40
Issue of the periodical within the volume
7
Country of publishing house
US - UNITED STATES
Number of pages
19
Pages from-to
4287-4305
UT code for WoS article
000525863400010
EID of the result in the Scopus database
2-s2.0-85083505254