Measure-valued solutions and weak-strong uniqueness for the incompressible inviscid fluid-rigid body interaction
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00542432" target="_blank" >RIV/67985840:_____/21:00542432 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s00021-021-00581-3" target="_blank" >https://doi.org/10.1007/s00021-021-00581-3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00021-021-00581-3" target="_blank" >10.1007/s00021-021-00581-3</a>
Alternative languages
Result language
angličtina
Original language name
Measure-valued solutions and weak-strong uniqueness for the incompressible inviscid fluid-rigid body interaction
Original language description
We consider a coupled system of partial and ordinary differential equations describing the interaction between an incompressible inviscid fluid and a rigid body moving freely inside the fluid. We prove the existence of measure-valued solutions which is generated by the vanishing viscosity limit of incompressible fluid–rigid body interaction system under some physically constitutive relations. Moreover, we show that the measure-valued solution coincides with strong solution on the interval of its existence. This relies on the weak-strong uniqueness analysis. This is the first result of an existence of measure-valued solution and weak-strong uniqueness in measure-valued sense in the case of inviscid fluid-structure interaction.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA19-04243S" target="_blank" >GA19-04243S: Partial differential equations in mechanics and thermodynamics of fluids</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Fluid Mechanics
ISSN
1422-6928
e-ISSN
1422-6952
Volume of the periodical
23
Issue of the periodical within the volume
3
Country of publishing house
CH - SWITZERLAND
Number of pages
24
Pages from-to
50
UT code for WoS article
000647419800007
EID of the result in the Scopus database
2-s2.0-85105487425