All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Measure-valued solutions and weak-strong uniqueness for the incompressible inviscid fluid-rigid body interaction

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00542432" target="_blank" >RIV/67985840:_____/21:00542432 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/s00021-021-00581-3" target="_blank" >https://doi.org/10.1007/s00021-021-00581-3</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00021-021-00581-3" target="_blank" >10.1007/s00021-021-00581-3</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Measure-valued solutions and weak-strong uniqueness for the incompressible inviscid fluid-rigid body interaction

  • Original language description

    We consider a coupled system of partial and ordinary differential equations describing the interaction between an incompressible inviscid fluid and a rigid body moving freely inside the fluid. We prove the existence of measure-valued solutions which is generated by the vanishing viscosity limit of incompressible fluid–rigid body interaction system under some physically constitutive relations. Moreover, we show that the measure-valued solution coincides with strong solution on the interval of its existence. This relies on the weak-strong uniqueness analysis. This is the first result of an existence of measure-valued solution and weak-strong uniqueness in measure-valued sense in the case of inviscid fluid-structure interaction.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA19-04243S" target="_blank" >GA19-04243S: Partial differential equations in mechanics and thermodynamics of fluids</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Fluid Mechanics

  • ISSN

    1422-6928

  • e-ISSN

    1422-6952

  • Volume of the periodical

    23

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    24

  • Pages from-to

    50

  • UT code for WoS article

    000647419800007

  • EID of the result in the Scopus database

    2-s2.0-85105487425