All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Weak-strong uniqueness for fluid-rigid body interaction problem with slip boundary condition

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00500493" target="_blank" >RIV/67985840:_____/19:00500493 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1063/1.5007824" target="_blank" >http://dx.doi.org/10.1063/1.5007824</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/1.5007824" target="_blank" >10.1063/1.5007824</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Weak-strong uniqueness for fluid-rigid body interaction problem with slip boundary condition

  • Original language description

    We consider a coupled partial differential equation-ordinary differential equation system describing the motion of the rigid body in a container filled with the incompressible, viscous fluid. The fluid and the rigid body are coupled via Navier’s slip boundary condition. We prove that the local in time strong solution is unique in the larger class of weak solutions on the interval of its existence. This is the first weak-strong uniqueness result in the area of fluid-structure interaction with a moving boundary.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA16-03230S" target="_blank" >GA16-03230S: Thermodynamically consistent models for fluid flows: mathematical theory and numerical solution</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Physics

  • ISSN

    0022-2488

  • e-ISSN

  • Volume of the periodical

    60

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    13

  • Pages from-to

  • UT code for WoS article

    000457410300006

  • EID of the result in the Scopus database

    2-s2.0-85059835509