Weak-strong uniqueness for the compressible fluid-rigid body interaction
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00521522" target="_blank" >RIV/67985840:_____/20:00521522 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.jde.2019.10.038" target="_blank" >https://doi.org/10.1016/j.jde.2019.10.038</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jde.2019.10.038" target="_blank" >10.1016/j.jde.2019.10.038</a>
Alternative languages
Result language
angličtina
Original language name
Weak-strong uniqueness for the compressible fluid-rigid body interaction
Original language description
In this work we study the coupled system of partial and ordinary differential equations describing the interaction between a compressible isentropic viscous fluid and a rigid body moving freely inside the fluid. In particular the position and velocity of the rigid body in the fluid are unknown and the motion of the rigid body is driven by the normal stress forces of the fluid acting on the boundary of the body. We prove that the strong solution, which is known to exist under certain smallness assumptions, is unique in the class of weak solutions to the problem. The proof relies on a correct definition of the relative energy, to use this tool we then have to introduce a change of coordinates to transform the strong solution to the domain of the weak solution in order to use it as a test function in the relative energy inequality. Estimating all arising terms we prove that the weak solution has to coincide with the transformed strong solution and finally that the transformation has to be in fact an identity.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA19-04243S" target="_blank" >GA19-04243S: Partial differential equations in mechanics and thermodynamics of fluids</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Differential Equations
ISSN
0022-0396
e-ISSN
—
Volume of the periodical
268
Issue of the periodical within the volume
8
Country of publishing house
US - UNITED STATES
Number of pages
30
Pages from-to
4756-4785
UT code for WoS article
000510863100023
EID of the result in the Scopus database
2-s2.0-85075398778