All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A uniqueness result for 3D incompressible fluid-rigid body interaction problem

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00534794" target="_blank" >RIV/67985840:_____/21:00534794 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/s00021-020-00542-2" target="_blank" >https://doi.org/10.1007/s00021-020-00542-2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00021-020-00542-2" target="_blank" >10.1007/s00021-020-00542-2</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A uniqueness result for 3D incompressible fluid-rigid body interaction problem

  • Original language description

    We study a 3D nonlinear moving boundary fluid-structure interaction problem describing the interaction of the fluid flow with a rigid body. The fluid flow is governed by 3D incompressible Navier-Stokes equations, while the motion of the rigid body is described by a system of ordinary differential equations called Euler equations for the rigid body. The equations are fully coupled via dynamical and kinematic coupling conditions. We consider two different kinds of kinematic coupling conditions: no-slip and slip. In both cases we prove a generalization of the well-known weak-strong uniqueness result for the Navier-Stokes equations to the fluid-rigid body system. More precisely, we prove that weak solutions that additionally satisfy the Prodi-Serrin Lr−Ls condition are unique in the class of Leray-Hopf weak solutions.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA19-04243S" target="_blank" >GA19-04243S: Partial differential equations in mechanics and thermodynamics of fluids</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Fluid Mechanics

  • ISSN

    1422-6928

  • e-ISSN

    1422-6952

  • Volume of the periodical

    23

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    39

  • Pages from-to

    1

  • UT code for WoS article

    000591142600001

  • EID of the result in the Scopus database

    2-s2.0-85096298374