A uniqueness result for 3D incompressible fluid-rigid body interaction problem
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00534794" target="_blank" >RIV/67985840:_____/21:00534794 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s00021-020-00542-2" target="_blank" >https://doi.org/10.1007/s00021-020-00542-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00021-020-00542-2" target="_blank" >10.1007/s00021-020-00542-2</a>
Alternative languages
Result language
angličtina
Original language name
A uniqueness result for 3D incompressible fluid-rigid body interaction problem
Original language description
We study a 3D nonlinear moving boundary fluid-structure interaction problem describing the interaction of the fluid flow with a rigid body. The fluid flow is governed by 3D incompressible Navier-Stokes equations, while the motion of the rigid body is described by a system of ordinary differential equations called Euler equations for the rigid body. The equations are fully coupled via dynamical and kinematic coupling conditions. We consider two different kinds of kinematic coupling conditions: no-slip and slip. In both cases we prove a generalization of the well-known weak-strong uniqueness result for the Navier-Stokes equations to the fluid-rigid body system. More precisely, we prove that weak solutions that additionally satisfy the Prodi-Serrin Lr−Ls condition are unique in the class of Leray-Hopf weak solutions.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA19-04243S" target="_blank" >GA19-04243S: Partial differential equations in mechanics and thermodynamics of fluids</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Fluid Mechanics
ISSN
1422-6928
e-ISSN
1422-6952
Volume of the periodical
23
Issue of the periodical within the volume
1
Country of publishing house
CH - SWITZERLAND
Number of pages
39
Pages from-to
1
UT code for WoS article
000591142600001
EID of the result in the Scopus database
2-s2.0-85096298374