Self-propelled motion of a rigid body inside a density dependent incompressible fluid
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00540653" target="_blank" >RIV/67985840:_____/21:00540653 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1051/mmnp/2020052" target="_blank" >https://doi.org/10.1051/mmnp/2020052</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/mmnp/2020052" target="_blank" >10.1051/mmnp/2020052</a>
Alternative languages
Result language
angličtina
Original language name
Self-propelled motion of a rigid body inside a density dependent incompressible fluid
Original language description
This paper is devoted to the existence of a weak solution to a system describing a self-propelled motion of a rigid body in a viscous fluid in the whole ℝ3. The fluid is modelled by the incompressible nonhomogeneous Navier-Stokes system with a nonnegative density. The motion of the rigid body is described by the balance of linear and angular momentum. We consider the case where slip is allowed at the fluid-solid interface through Navier condition and prove the global existence of a weak solution.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA19-04243S" target="_blank" >GA19-04243S: Partial differential equations in mechanics and thermodynamics of fluids</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematical Modelling of Natural Phenomena
ISSN
0973-5348
e-ISSN
1760-6101
Volume of the periodical
16
Issue of the periodical within the volume
1
Country of publishing house
FR - FRANCE
Number of pages
26
Pages from-to
9
UT code for WoS article
000626127800003
EID of the result in the Scopus database
2-s2.0-85102145855