All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Self-propelled motion of a rigid body inside a density dependent incompressible fluid

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00540653" target="_blank" >RIV/67985840:_____/21:00540653 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1051/mmnp/2020052" target="_blank" >https://doi.org/10.1051/mmnp/2020052</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1051/mmnp/2020052" target="_blank" >10.1051/mmnp/2020052</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Self-propelled motion of a rigid body inside a density dependent incompressible fluid

  • Original language description

    This paper is devoted to the existence of a weak solution to a system describing a self-propelled motion of a rigid body in a viscous fluid in the whole ℝ3. The fluid is modelled by the incompressible nonhomogeneous Navier-Stokes system with a nonnegative density. The motion of the rigid body is described by the balance of linear and angular momentum. We consider the case where slip is allowed at the fluid-solid interface through Navier condition and prove the global existence of a weak solution.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA19-04243S" target="_blank" >GA19-04243S: Partial differential equations in mechanics and thermodynamics of fluids</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematical Modelling of Natural Phenomena

  • ISSN

    0973-5348

  • e-ISSN

    1760-6101

  • Volume of the periodical

    16

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    FR - FRANCE

  • Number of pages

    26

  • Pages from-to

    9

  • UT code for WoS article

    000626127800003

  • EID of the result in the Scopus database

    2-s2.0-85102145855