All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Motion of a rigid body in a compressible fluid with Navier-slip boundary condition

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00560271" target="_blank" >RIV/67985840:_____/22:00560271 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.jde.2022.07.045" target="_blank" >https://doi.org/10.1016/j.jde.2022.07.045</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jde.2022.07.045" target="_blank" >10.1016/j.jde.2022.07.045</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Motion of a rigid body in a compressible fluid with Navier-slip boundary condition

  • Original language description

    In this work, we study the motion of a rigid body in a bounded domain which is filled with a compressible isentropic fluid. We consider the Navier-slip boundary condition at the interface as well as at the boundary of the domain. This is the first mathematical analysis of a compressible fluid-rigid body system where Navier-slip boundary conditions are considered. We prove existence of a weak solution of the fluid-structure system up to collision.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Differential Equations

  • ISSN

    0022-0396

  • e-ISSN

    1090-2732

  • Volume of the periodical

    338

  • Issue of the periodical within the volume

    25 November

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    65

  • Pages from-to

    256-320

  • UT code for WoS article

    000848425400006

  • EID of the result in the Scopus database

    2-s2.0-85136121779