Motion of several rigid bodies in a compressible fluid - mixed case
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00565915" target="_blank" >RIV/67985840:_____/22:00565915 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.4171/ESIAM/3/6" target="_blank" >http://dx.doi.org/10.4171/ESIAM/3/6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4171/ESIAM/3/6" target="_blank" >10.4171/ESIAM/3/6</a>
Alternative languages
Result language
angličtina
Original language name
Motion of several rigid bodies in a compressible fluid - mixed case
Original language description
n this article we show local-in-time existence of a weak solution to a system of partial differential equations describing the evolution of a compressible isentropic fluid which contains several rigid bodies. The fluid-structure interaction is incorporated by the Navier-slip boundary condition at the interface of the fluid and the rigid bodies. At the boundary of the fluid’s container, we assume Dirichlet boundary conditions. This work follows an earlier article of the same authors regarding the evolution of a compressible fluid that contains one rigid body and assumes Navier-slip boundary conditions at the interface as well as at the boundary of the container. The novelties comprise a new bound on the maximal time, for which we can prove existence of weak solutions, different test functions and a different extension of the fluid velocity from the fluid domain to the whole container.
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA22-01591S" target="_blank" >GA22-01591S: Mathematical theory and numerical analysis for equations of viscous newtonian compressible fluids</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
Interactions between Elasticity and Fluid Mechanics
ISBN
978-3-98547-027-3
Number of pages of the result
40
Pages from-to
135-174
Number of pages of the book
248
Publisher name
EMS
Place of publication
Berlin
UT code for WoS chapter
—