Continuity of drag and domain stability in the low Mach number limits
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F12%3A00384978" target="_blank" >RIV/67985840:_____/12:00384978 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00021-012-0106-1" target="_blank" >http://dx.doi.org/10.1007/s00021-012-0106-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00021-012-0106-1" target="_blank" >10.1007/s00021-012-0106-1</a>
Alternative languages
Result language
angličtina
Original language name
Continuity of drag and domain stability in the low Mach number limits
Original language description
We consider a mathematical model of a rigid body immersed in a viscous, compressible fluid moving with a velocity prescribed on the boundary of a large channel containing the body. We assume that the Mach number is proportional to a small parameter ? andthat the general boundary of the body contains small asperities of amplitude proportional to ?? for a certain ? > 0 and suppose the Navier?s slip condition on this rough boundary. We show that time averages of the drag functional converge, as ? 0, to the corresponding time averages of the drag for the limit system, whereas the limit system is turning out to be the incompressible Navier?Stokes system with no-slip condition on the smooth limit body.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F09%2F0917" target="_blank" >GA201/09/0917: Mathematical and computer analysis of the evolution processes in nonlinear viscoelastic fluid-like materials</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Fluid Mechanics
ISSN
1422-6928
e-ISSN
—
Volume of the periodical
14
Issue of the periodical within the volume
4
Country of publishing house
CH - SWITZERLAND
Number of pages
20
Pages from-to
731-750
UT code for WoS article
000310641700007
EID of the result in the Scopus database
—