All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Continuity of drag and domain stability in the low Mach number limits

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F12%3A00384978" target="_blank" >RIV/67985840:_____/12:00384978 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s00021-012-0106-1" target="_blank" >http://dx.doi.org/10.1007/s00021-012-0106-1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00021-012-0106-1" target="_blank" >10.1007/s00021-012-0106-1</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Continuity of drag and domain stability in the low Mach number limits

  • Original language description

    We consider a mathematical model of a rigid body immersed in a viscous, compressible fluid moving with a velocity prescribed on the boundary of a large channel containing the body. We assume that the Mach number is proportional to a small parameter ? andthat the general boundary of the body contains small asperities of amplitude proportional to ?? for a certain ? > 0 and suppose the Navier?s slip condition on this rough boundary. We show that time averages of the drag functional converge, as ? 0, to the corresponding time averages of the drag for the limit system, whereas the limit system is turning out to be the incompressible Navier?Stokes system with no-slip condition on the smooth limit body.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA201%2F09%2F0917" target="_blank" >GA201/09/0917: Mathematical and computer analysis of the evolution processes in nonlinear viscoelastic fluid-like materials</a><br>

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2012

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Fluid Mechanics

  • ISSN

    1422-6928

  • e-ISSN

  • Volume of the periodical

    14

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    20

  • Pages from-to

    731-750

  • UT code for WoS article

    000310641700007

  • EID of the result in the Scopus database