Relative energy approach to a diffuse interface model of a compressible two-phase flow
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00503415" target="_blank" >RIV/67985840:_____/19:00503415 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/19:10408164
Result on the web
<a href="http://dx.doi.org/10.1002/mma.5436" target="_blank" >http://dx.doi.org/10.1002/mma.5436</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mma.5436" target="_blank" >10.1002/mma.5436</a>
Alternative languages
Result language
angličtina
Original language name
Relative energy approach to a diffuse interface model of a compressible two-phase flow
Original language description
We propose a simple model for a two-phase flow with a diffuse interface. The model couples the compressible Navier-Stokes system governing the evolution of the fluid density and the velocity field with the Allen-Cahn equation for the order parameter. We show that the model is thermodynamically consistent, in particular, a variant of the relative energy inequality holds. As a corollary, we show the weak-strong uniqueness principle, meaning any weak solution coincides with the strong solution emanating from the same initial data on the life span of the latter. Such a result plays a crucial role in the analysis of the associated numerical schemes. Finally, we perform the low Mach number limit obtaining the standard incompressible model.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/7AMB17FR053" target="_blank" >7AMB17FR053: Dynamics of mutli-component fluids</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematical Methods in the Applied Sciences
ISSN
0170-4214
e-ISSN
—
Volume of the periodical
42
Issue of the periodical within the volume
5
Country of publishing house
GB - UNITED KINGDOM
Number of pages
15
Pages from-to
1465-1479
UT code for WoS article
000461898000009
EID of the result in the Scopus database
2-s2.0-85060516415