All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On global well/ill-posedness of the Euler-Poisson system

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F16%3A00458906" target="_blank" >RIV/67985840:_____/16:00458906 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-0348-0939-9_12" target="_blank" >http://dx.doi.org/10.1007/978-3-0348-0939-9_12</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-0348-0939-9_12" target="_blank" >10.1007/978-3-0348-0939-9_12</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On global well/ill-posedness of the Euler-Poisson system

  • Original language description

    We discuss the problem of well-posedness of the Euler-Poisson system arising, for example, in the theory of semi-conductors, models of plasma and gaseous stars in astrophysics. We introduce the concept of dissipative weak solution satisfying, in addition to the standard system of integral identities replacing the original system of partial differential equations, the balance of total energy, together with the associated relative entropy inequality. We show that strong solutions are unique in the class of dissipative solutions (weak-strong uniqueness). Finally, we use the method of convex integration to show that the Euler-Poisson system may admit even infinitely many weak dissipative solutions emanating from the same initial data.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Recent Developments of Mathematical Fluid Mechanics

  • ISBN

    978-3-0348-0938-2

  • ISSN

    2297-0320

  • e-ISSN

  • Number of pages

    17

  • Pages from-to

    215-231

  • Publisher name

    Springer

  • Place of publication

    Basel

  • Event location

    Nara

  • Event date

    Mar 5, 2013

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article