Well/ill posedness for the Euler-Korteweg-Poisson system and related problems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F15%3A00443854" target="_blank" >RIV/67985840:_____/15:00443854 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1080/03605302.2014.972517" target="_blank" >http://dx.doi.org/10.1080/03605302.2014.972517</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/03605302.2014.972517" target="_blank" >10.1080/03605302.2014.972517</a>
Alternative languages
Result language
angličtina
Original language name
Well/ill posedness for the Euler-Korteweg-Poisson system and related problems
Original language description
We consider a general Euler-Korteweg-Poisson system in R3, supplemented with the space periodic boundary conditions, where the quantum hydrodynamics equations and the classical fluid dynamics equations with capillarity are recovered as particular examples. We show that the system admits infinitely many global-intime weak solutions for any sufficiently smooth initial data including the case of a vanishing initial density - the vacuum zones. Moreover, there is a vast family of initial data, for which theCauchy problem possesses infinitely many dissipative weak solutions, i.e. the weak solutions satisfying the energy inequality. Finally, we establish the weak-strong uniqueness property in a class of solutions without vacuum. In this paper we show that, even in presence of a dispersive tensor, we have the same phenomena found by De Lellis and Székelyhidi.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Communications in Partial Differential Equations
ISSN
0360-5302
e-ISSN
—
Volume of the periodical
40
Issue of the periodical within the volume
7
Country of publishing house
US - UNITED STATES
Number of pages
22
Pages from-to
1314-1335
UT code for WoS article
000353691700005
EID of the result in the Scopus database
2-s2.0-84944443908