Existence and non-uniqueness of global weak solutions to inviscid primitive and Boussinesq equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F17%3A00474807" target="_blank" >RIV/67985840:_____/17:00474807 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00220-017-2846-5" target="_blank" >http://dx.doi.org/10.1007/s00220-017-2846-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00220-017-2846-5" target="_blank" >10.1007/s00220-017-2846-5</a>
Alternative languages
Result language
angličtina
Original language name
Existence and non-uniqueness of global weak solutions to inviscid primitive and Boussinesq equations
Original language description
We consider the initial value problem for the inviscid Primitive and Boussinesq equations in three spatial dimensions. We recast both systems as an abstract Euler-type system and apply the methods of convex integration of De Lellis and Székelyhidi to show the existence of infinitely many global weak solutions of the studied equations for general initial data. We also introduce an appropriate notion of dissipative solutions and show the existence of suitable initial data which generate infinitely many dissipative solutions.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Communications in Mathematical Physics
ISSN
0010-3616
e-ISSN
—
Volume of the periodical
353
Issue of the periodical within the volume
3
Country of publishing house
DE - GERMANY
Number of pages
16
Pages from-to
1201-1216
UT code for WoS article
000401839100008
EID of the result in the Scopus database
2-s2.0-85014256017