All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Existence and non-uniqueness of global weak solutions to inviscid primitive and Boussinesq equations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F17%3A00474807" target="_blank" >RIV/67985840:_____/17:00474807 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s00220-017-2846-5" target="_blank" >http://dx.doi.org/10.1007/s00220-017-2846-5</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00220-017-2846-5" target="_blank" >10.1007/s00220-017-2846-5</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Existence and non-uniqueness of global weak solutions to inviscid primitive and Boussinesq equations

  • Original language description

    We consider the initial value problem for the inviscid Primitive and Boussinesq equations in three spatial dimensions. We recast both systems as an abstract Euler-type system and apply the methods of convex integration of De Lellis and Székelyhidi to show the existence of infinitely many global weak solutions of the studied equations for general initial data. We also introduce an appropriate notion of dissipative solutions and show the existence of suitable initial data which generate infinitely many dissipative solutions.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Communications in Mathematical Physics

  • ISSN

    0010-3616

  • e-ISSN

  • Volume of the periodical

    353

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    16

  • Pages from-to

    1201-1216

  • UT code for WoS article

    000401839100008

  • EID of the result in the Scopus database

    2-s2.0-85014256017