On the weak solutions to the equations of a compressible heat conducting gas
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F15%3A00440701" target="_blank" >RIV/67985840:_____/15:00440701 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.anihpc.2013.11.005" target="_blank" >http://dx.doi.org/10.1016/j.anihpc.2013.11.005</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.anihpc.2013.11.005" target="_blank" >10.1016/j.anihpc.2013.11.005</a>
Alternative languages
Result language
angličtina
Original language name
On the weak solutions to the equations of a compressible heat conducting gas
Original language description
We consider the weak solutions to the Euler?Fourier system describing the motion of a compressible heat conducting gas. Employing the method of convex integration, we show that the problem admits infinitely many global-in-time weak solutions for any choice of smooth initial data. We also show that for any initial distribution of the density and temperature, there exists an initial velocity such that the associated initial-value problem possesses infinitely many solutions that conserve the total energy.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Annales de l'Institut Henri Poincaré. Analyse non Linéaire
ISSN
0294-1449
e-ISSN
—
Volume of the periodical
32
Issue of the periodical within the volume
1
Country of publishing house
FR - FRANCE
Number of pages
19
Pages from-to
225-243
UT code for WoS article
000349810800010
EID of the result in the Scopus database
2-s2.0-84923131864