On weak solutions to a diffuse interface model of a binary mixture of compressible fluids
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F16%3A00452994" target="_blank" >RIV/67985840:_____/16:00452994 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.3934/dcdss.2016.9.173" target="_blank" >http://dx.doi.org/10.3934/dcdss.2016.9.173</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3934/dcdss.2016.9.173" target="_blank" >10.3934/dcdss.2016.9.173</a>
Alternative languages
Result language
angličtina
Original language name
On weak solutions to a diffuse interface model of a binary mixture of compressible fluids
Original language description
We consider the Euler-Cahn-Hilliard system proposed by Lowengrub and Truskinovsky describing the motion of a binary mixture of compressible fluids. We show that the associated initial-value problem possesses infinitely many global-in-time weak solutions for any finite energy initial data. A modification of the method of convex integration is used to prove the result.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA13-00522S" target="_blank" >GA13-00522S: Qualitative analysis and numerical solution of problems of flows in generally time-dependent domains with various boundary conditions</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete and Continuous Dynamical systems - Series S
ISSN
1937-1632
e-ISSN
—
Volume of the periodical
9
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
11
Pages from-to
173-183
UT code for WoS article
000369601800015
EID of the result in the Scopus database
2-s2.0-84958758166