L2 decay for weak solution to equations of non-Newtonian incompressible fluids in the whole space.
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F01%3A05025076" target="_blank" >RIV/67985840:_____/01:05025076 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
L2 decay for weak solution to equations of non-Newtonian incompressible fluids in the whole space.
Original language description
We study an asymptotic bahaviour of non-Newtonian fluids in the whole space. We prove L2 decay in time under the following assumptions. Firstly we consider that initial data belong to L1. Secondly, we assume that initial data are also initial data of semigroup solution of heat equation with known behaviour at infinity.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F98%2F1450" target="_blank" >GA201/98/1450: Asymptotic behaviour of solutions to nonlinear evolution equations</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2001
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nonlinear Analysis Theory, Methods & Applications. Serie A: Theory and Methods
ISSN
0362-546X
e-ISSN
—
Volume of the periodical
47
Issue of the periodical within the volume
N/A
Country of publishing house
DE - GERMANY
Number of pages
12
Pages from-to
4181-4192
UT code for WoS article
—
EID of the result in the Scopus database
—