All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On weak solutions to the 2D Savage-Hutter model of the motion of a gravity driven avalanche flow

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F16%3A00459881" target="_blank" >RIV/67985840:_____/16:00459881 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1080/03605302.2015.1127968" target="_blank" >http://dx.doi.org/10.1080/03605302.2015.1127968</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1080/03605302.2015.1127968" target="_blank" >10.1080/03605302.2015.1127968</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On weak solutions to the 2D Savage-Hutter model of the motion of a gravity driven avalanche flow

  • Original language description

    We consider the Savage–Hutter system consisting of two-dimensional depth-integrated shallow water equations for the incompressible fluid with the Coulomb-type friction term. Using the method of convex integration we show that the associated initial value problem possesses infinitely many weak solutions for any finite energy initial data. On the other hand, the problem enjoys the weak-strong uniqueness property provided the system of equations is supplemented with the energy inequality.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Communications in Partial Differential Equations

  • ISSN

    0360-5302

  • e-ISSN

  • Volume of the periodical

    41

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    15

  • Pages from-to

    759-773

  • UT code for WoS article

    000377771300002

  • EID of the result in the Scopus database

    2-s2.0-84962464658