All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Maximal dissipation and well-posedness for the compressible Euler system

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F14%3A00430551" target="_blank" >RIV/67985840:_____/14:00430551 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s00021-014-0163-8" target="_blank" >http://dx.doi.org/10.1007/s00021-014-0163-8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00021-014-0163-8" target="_blank" >10.1007/s00021-014-0163-8</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Maximal dissipation and well-posedness for the compressible Euler system

  • Original language description

    We discuss the problem of well-posedness of the compressible (barotropic) Euler system in the framework of weak solutions. The principle of maximal dissipation introduced by C.M. Dafermos is adapted and combined with the concept of admissible weak solutions. We use the method of convex integration in the spirit of the recent work of C.DeLellis and L.Sz´ekelyhidi to show various counterexamples to well-posedness. On the other hand, we conjecture that the principle of maximal dissipation should be retained as a possible criterion of uniqueness as it is violated by the oscillatory solutions obtained in the process of convex integration.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    R - Projekt Ramcoveho programu EK

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Fluid Mechanics

  • ISSN

    1422-6928

  • e-ISSN

  • Volume of the periodical

    16

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    15

  • Pages from-to

    447-461

  • UT code for WoS article

    000340559700003

  • EID of the result in the Scopus database