An overview of some recent results on the Euler system of isentropic gas dynamics
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F16%3A00458832" target="_blank" >RIV/67985840:_____/16:00458832 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00574-016-0135-0" target="_blank" >http://dx.doi.org/10.1007/s00574-016-0135-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00574-016-0135-0" target="_blank" >10.1007/s00574-016-0135-0</a>
Alternative languages
Result language
angličtina
Original language name
An overview of some recent results on the Euler system of isentropic gas dynamics
Original language description
This overview is concerned with the well-posedness problem for the isentropic compressible Euler equations of gas dynamics. The results we present are in line with the programof investigatingthe efficiency of different selection criteria proposed in the literature in order to weed out non-physical solutions to more-dimensional systems of conservation laws and they build upon the method of convex integration developed by De Lellis and Székelyhidi for the incompressible Euler equations. Mainly following [5], we investigate the role of the maximal dissipation criterion proposed by Dafermos in [6]: we prove how, for specific pressure laws, some non-standard (i.e. constructed via convex integration methods) solutions to the Riemann problem for the isentropic Euler system in two space dimensions have greater energy dissipation rate than the classical self-similar solution emanating from the same Riemann data.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Bulletin of the Brazilian Mathematical Society
ISSN
1678-7544
e-ISSN
—
Volume of the periodical
47
Issue of the periodical within the volume
1
Country of publishing house
BR - BRAZIL
Number of pages
13
Pages from-to
241-253
UT code for WoS article
000372554400018
EID of the result in the Scopus database
2-s2.0-84961827124