All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Maximally-dissipative local solutions to rate-independent systems and application to damage and delamination problems

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F15%3A00456081" target="_blank" >RIV/61388998:_____/15:00456081 - isvavai.cz</a>

  • Result on the web

    <a href="http://ac.els-cdn.com/S0362546X14003101/1-s2.0-S0362546X14003101-main.pdf?_tid=c4e832ba-d4c2-11e5-8448-00000aacb35f&acdnat=1455637049_0a70d2c2e8ce52a598373a559623d776" target="_blank" >http://ac.els-cdn.com/S0362546X14003101/1-s2.0-S0362546X14003101-main.pdf?_tid=c4e832ba-d4c2-11e5-8448-00000aacb35f&acdnat=1455637049_0a70d2c2e8ce52a598373a559623d776</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.na.2014.09.020" target="_blank" >10.1016/j.na.2014.09.020</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Maximally-dissipative local solutions to rate-independent systems and application to damage and delamination problems

  • Original language description

    The system of two inclusions delta(u)epsilon(t, u(t), z(t)) there exists 0 and delta R((z) over dot)+ delta(z)epsilon(t, u(t), z(t)) there exists 0 with the dissipation potential R degree-1 homogeneous and with the stored energy epsilon(t, ., .) separately convex is considered. The relation between conventional weak solutions and local solutions is shown, and a suitably integrated maximal-dissipation principle is devised to select force-driven local solutions and eliminate solutions with "too-early jumps'' as it may occur in energy-driven ones. This is illustrated on scalar examples. An approximation by a simple and efficient semi-implicit time discretization of the fractional-step type is shown to converge to local solutions. On the scalar examples, the approximate solutions are shown to satisfy the integrated maximal-dissipation principle asymptotically, while in general it is devised only to serve as an a-posteriori tool to justify (or possibly adaptively adjust) thus obtained appro

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GAP201%2F10%2F0357" target="_blank" >GAP201/10/0357: Modern mathematical and computational models for inelastic processes in solids</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Nonlinear Analysis: Theory, Methods & Applications

  • ISSN

    0362-546X

  • e-ISSN

  • Volume of the periodical

    113

  • Issue of the periodical within the volume

    January

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    18

  • Pages from-to

    33-50

  • UT code for WoS article

    000345687300002

  • EID of the result in the Scopus database

    2-s2.0-84908428491