All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Eigenvalue Fluctuations for Lattice Anderson Hamiltonians: Unbounded Potentials

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11620%2F19%3A10394508" target="_blank" >RIV/00216208:11620/19:10394508 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=IhY0~TTFXz" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=IhY0~TTFXz</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/14097389X" target="_blank" >10.1137/14097389X</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Eigenvalue Fluctuations for Lattice Anderson Hamiltonians: Unbounded Potentials

  • Original language description

    We study the statistics of Dirichlet eigenvalues of the random Schrodinger operator -epsilon(-2)Delta((d)) + xi((epsilon))(x), with Delta((d)) the discrete Laplacian on Z(d) and xi((epsilon))(x) uniformly bounded independent random variables, on sets of the form D-epsilon := {x is an element of Z(d) : x epsilon is an element of D} for D subset of R-d bounded, open, and with a smooth boundary. If E xi((epsilon))(x) = U(x epsilon) holds for some bounded and continuous U : D -&gt; R, we show that, as epsilon down arrow 0, the kth eigenvalue converges to the kth Dirichlet eigenvalue of the homogenized operator -Delta + U(x), where Delta is the continuum Dirichlet Laplacian on D. Assuming further that Var(xi((epsilon))(x)) = V (x epsilon) for some positive and continuous V : D -&gt; R, we establish a multivariate central limit theorem for simple eigenvalues centered by their expectation. The limiting covariance for a given pair of simple eigenvalues is expressed as an integral of V against the product of squares of the corresponding eigenfunctions of -Delta + U(x).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

    <a href="/en/project/GA16-15238S" target="_blank" >GA16-15238S: Collective behavior of large stochastic systems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Interdisciplinary Information Sciences

  • ISSN

    1340-9050

  • e-ISSN

  • Volume of the periodical

    2018

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    JP - JAPAN

  • Number of pages

    18

  • Pages from-to

    59-76

  • UT code for WoS article

    000385023400013

  • EID of the result in the Scopus database

    2-s2.0-84985030638