All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Multiplicity and concentration of solutions to fractional anisotropic Schrodinger equations with exponential growth

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU148505" target="_blank" >RIV/00216305:26220/23:PU148505 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/article/10.1007/s00229-022-01450-7" target="_blank" >https://link.springer.com/article/10.1007/s00229-022-01450-7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00229-022-01450-7" target="_blank" >10.1007/s00229-022-01450-7</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Multiplicity and concentration of solutions to fractional anisotropic Schrodinger equations with exponential growth

  • Original language description

    In this paper, we consider the Schrodinger equation involving the fractional $(p, p_1, . . . , p_m)$-Laplacian as follows $(-Delta)_p^s u +sum_ {i=1}^m (-Delta)_{p_i}^s u + V(epsilon x)(|u|^{(N-2s)/2s} u + sum_{i=1}^m |u|^{p_i-2} u) = f (u) in R^N$ where $epsilon$ is a positive parameter, $N=ps, s in (0,1), 2 leq p < p_1 < dots < p_m < +infty, m geq 1$. The nonlinear function f has the exponential growth and potential function V is continuous function satisfying some suitable conditions. Using the penalization method and Ljusternik-Schnirelmann theory, we study the existence, multiplicity and concentration of nontrivial nonnegative solutions for small values of the parameter. In our best knowledge, it is the first time that the above problem is studied.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    MANUSCRIPTA MATHEMATICA

  • ISSN

    0025-2611

  • e-ISSN

    1432-1785

  • Volume of the periodical

    173

  • Issue of the periodical within the volume

    1-2

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    56

  • Pages from-to

    499-554

  • UT code for WoS article

    000922764800001

  • EID of the result in the Scopus database

    2-s2.0-85146845106