All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On a class of generalized solutions to equations describing incompressible viscous fluids

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00524629" target="_blank" >RIV/67985840:_____/20:00524629 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/s10231-019-00917-x" target="_blank" >https://doi.org/10.1007/s10231-019-00917-x</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10231-019-00917-x" target="_blank" >10.1007/s10231-019-00917-x</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On a class of generalized solutions to equations describing incompressible viscous fluids

  • Original language description

    We consider a class of viscous fluids with a general monotone dependence of the viscous stress on the symmetric velocity gradient. We introduce the concept of dissipative solution to the associated initial boundary value problem inspired by the measure-valued solutions for the inviscid (Euler) system. We show the existence as well as the weak–strong uniqueness property in the class of dissipative solutions. Finally, the dissipative solution enjoying certain extra regularity coincides with a strong solution of the same problem.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Annali di Matematica Pura ed Applicata

  • ISSN

    0373-3114

  • e-ISSN

  • Volume of the periodical

    199

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    13

  • Pages from-to

    1183-1195

  • UT code for WoS article

    000489537900003

  • EID of the result in the Scopus database

    2-s2.0-85074115644