On a class of generalized solutions to equations describing incompressible viscous fluids
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00524629" target="_blank" >RIV/67985840:_____/20:00524629 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s10231-019-00917-x" target="_blank" >https://doi.org/10.1007/s10231-019-00917-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10231-019-00917-x" target="_blank" >10.1007/s10231-019-00917-x</a>
Alternative languages
Result language
angličtina
Original language name
On a class of generalized solutions to equations describing incompressible viscous fluids
Original language description
We consider a class of viscous fluids with a general monotone dependence of the viscous stress on the symmetric velocity gradient. We introduce the concept of dissipative solution to the associated initial boundary value problem inspired by the measure-valued solutions for the inviscid (Euler) system. We show the existence as well as the weak–strong uniqueness property in the class of dissipative solutions. Finally, the dissipative solution enjoying certain extra regularity coincides with a strong solution of the same problem.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Annali di Matematica Pura ed Applicata
ISSN
0373-3114
e-ISSN
—
Volume of the periodical
199
Issue of the periodical within the volume
3
Country of publishing house
DE - GERMANY
Number of pages
13
Pages from-to
1183-1195
UT code for WoS article
000489537900003
EID of the result in the Scopus database
2-s2.0-85074115644